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Abstract

Given a constructor term rewriting system that defines injective functions, the inversion compiler proposed
by Nishida, Sakai and Sakabe generates a conditional term rewriting system that defines the inverse relations
of the injective functions, and then the compiler unravels the conditional system into an unconditional term
rewriting system. In general, the resulting unconditional system is not (innermost-)confluent even if the
conditional system is (innermost-)confluent. In this paper, we propose a modification of the Knuth-Bendix
completion procedure, which is used as a post-processor of the inversion compiler. Given a confluent and
operationally terminating conditional system, the procedure takes the resulting unconditional systems as
input. When the procedure halts successfully, it returns convergent systems that are computationally
equivalent to the conditional systems. To adapt the modified procedure to the conditional systems that are
not confluent but innermost-confluent, we propose a simplified variant of the modified procedure. We report
that the implementations of the procedures succeed in generating innermost-convergent inverse systems for
all the examples we tried.
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1 Introduction

Inverse computation of an n-ary function f is, given an output v, the calculation of
the possible input v1, . . . , vn of f such that f(v1, . . . , vn) = v. Two approaches for
inverse computation are distinguished [1]: inverse interpreters [4,1] that performs
inverse computation, and inversion compilers [18,28,9,25,24,7,19,20,2] that performs
program inversion.

Given a constructor term rewriting system (constructor TRS), the inversion
compiler proposed in [24,25] first generates a deterministic conditional TRS (DC-
TRS) as an intermediate result, and then transforms the DCTRS into a TRS that
is equivalent to the DCTRS with respect to inverse computation. The first phase
of the compiler performs a local inversion: for every constructor TRS, the first
phase generates a DCTRS, called an inverse system, which represents the complete
inverse relation for the reduction relation of the constructor TRS. The second phase

1 Email: nishida@is.nagoya-u.ac.jp
2 Email: sakai@is.nagoya-u.ac.jp

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:nishida@is.nagoya-u.ac.jp
mailto:sakai@is.nagoya-u.ac.jp


Nishida

inversion unraveling- - -��HH
��HH

U(Inv(R))
terminates?

Inv UR

TRS
completion

-

R′- -

U(Inv(R))inversion compiler [25]

y
n

non-terminating inverse TRS

inverse TRS
convergentinjective

Fig. 1. Overview of the partial inversion with completion.

employs (a variant of) Ohlebusch’s unraveling [26]. Unravelings are transformations
based on Marchiori’s approach [15] that transform DCTRSs into TRSs.

Unfortunately, the compiler cannot always generate TRSs that are computation-
ally equivalent to the corresponding DCTRSs due to a characteristic of unravelings
[15,27,30,22]. The characteristic is that the unraveled TRSs of DCTRSs may have
unexpected normal forms that represent dead ends of wrong choices at branches of
evaluating conditional parts of the DCTRSs (see the example Inv(R1) shown later
in this section). These wrong choices are captured by critical pairs of the unraveled
TRSs, each of which originates from two (conditional) rewrite rules corresponding
to the ‘correct’ and ‘wrong’ choices. Note that any rules looking like ‘wrong choice’
must be necessary elsewhere, and that it is decidable whether or not a normal form
is expected: a normal form of the unraveled TRSs is an unexpected one if it contains
an extra defined symbol introduced by the unraveling.

In program inversion by the inversion compiler [25,24], this problem arises even
if all functions defined in the given constructor TRSs are injective. For this reason,
the resulting TRSs do not define functions and thus the inversion compiler is less
applicable to injective functions in practical functional programming languages —
it is easy to translate functional programs into constructor TRSs, but difficult to
translate the resulting TRSs of the compiler back into functional programs.

In this paper, we propose a modification of the Knuth-Bendix completion proce-
dure in order to transform the unraveled TRSs of confluent and operationally ter-
minating DCTRSs into convergent (and possibly non-overlapping) TRSs that are
computationally equivalent to the DCTRSs. Unfortunately, the procedure does not
always halt just as in the case of the ordinary completion procedure. However, if the
procedure halts successfully and the resulting convergent TRSs are non-overlapping,
then the resulting systems can be translated back into functional programs due to
the non-overlapping property. When all functions defined in the input TRSs are
injective, we take the modified completion procedure as a post-processor into the
inversion compiler (Fig. 1 and Section 5). Through this approach, we show that un-
ravelings are useful not only in analyzing properties of DCTRSs [15,27] but also in
generating programs that can be used for computation instead of the corresponding
original programs, such as program inversion of functional programs.

Consider the following functional program written in Standard ML where
Snoc(xs, y) produces the list obtained from xs by adding y as the last element:

fun Snoc( [] , y ) = [y]
| Snoc( x::xs, y ) = x :: Snoc( xs, y );

We can easily translate the above program into the following constructor TRS:

R1 = { Snoc(nil, y)→ [y], Snoc(x ::xs, y)→ x ::Snoc(xs, y) }
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where nil and :: are list constructors as usual, [t1, t2, . . . , tn] abbreviates the list
t1 :: (t2 :: · · · :: (tn :: nil) · · ·). The compiler inverts R1 into the following DCTRS in
the first phase: 3

Inv(R1) =

 InvSnoc([y])→ 〈nil, y〉

InvSnoc(x ::ys)→ 〈x ::xs, y〉 ⇐ InvSnoc(ys)→ 〈xs, y〉

where each tuple of n terms t1, . . . , tn is denoted by 〈t1, . . . , tn〉 that can be rep-
resented as terms by introducing an n-ary constructor. The compiler unravels the
DCTRS Inv(R1) into the following TRS in the second phase:

U(Inv(R1)) =


InvSnoc([y])→ 〈nil, y〉,

InvSnoc(x ::ys)→ U1(InvSnoc(ys), x, ys),

U1(〈xs, y〉, x, ys)→ 〈x ::xs, y〉


The introduced symbol U1 is used for evaluating the conditional part InvSnoc(ys)→
〈xs, y〉 of the second rule in Inv(R1). The term Snoc([a, b], c) has a
unique normal form [a, b, c] but InvSnoc([a, b, c]) has two normal forms: a
solution 〈[a, b], c〉 of inverse computation and an unexpected normal form
U1(U1(U1(InvSnoc(nil), c, nil), b, [c]), a, [b, c]). The restricted inversion compiler in
[2] for generating non-overlapping systems is not applicable to this case because R1

is out of its scope. In this example, it appears to be easy to translate from the
TRS U(Inv(R1)) or the CTRS Inv(R1) into a functional program because we can
easily determine an appropriate priority of rules, for instance, the common first rule
InvSnoc[y] → 〈nil, y〉 may have the highest priority. However, such a translation
based on priorities of rules is difficult in general because we cannot decide which
rules have priority of the application to terms. On the other hand, it is probably
impossible that one transforms input systems into equivalent systems from which
the compiler generates the inverse systems without overlapping.

To avoid this problem, it has been shown in [22] that the transformation in [30]
is suitable as the second phase of the compiler, in the sense of producing conver-
gent systems. However, the generated systems contain some special symbols and
overlapping rules. For this reason, it is difficult to translate the convergent but
overlapping TRS into a functional program (see Section 6).

Roughly speaking, non-confluence of U(Inv(R1)) comes from the critical pair
(〈nil, x〉, U1(InvSnoc(nil), x, nil)) between the first and second rules in U(Inv(R1)).
In this case, the application of the first rule is ‘correct’ and that of the second
is ‘wrong’, that is, 〈nil, x〉 is the expected result and U1(InvSnoc(nil), x, nil) is the
unexpected recursive call of U1 containing the dead end InvSnoc(nil). From this
observation, by adding the rule U1(InvSnoc(nil), x, nil) → 〈nil, x〉, the unexpected
normal form of InvSnoc([a, b, c]) can be reduced to the solution. This added rule
provides a path from the wrong branch of inverse computation back to the correct
branch. Due to this rule, the new TRS is confluent. This process just corresponds

3 To simplify discussions, we omit describing special rules in the form of InvF (F (x1, . . . , xn)) → 〈x1, . . . , xn〉
[25,24] because they are meaningless for inverse computation in dealing with functional programs on call-
by-value interpretation. The special rules are necessary only for inverse computation of normalizing com-
putation in term rewriting.
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to the behavior of completion. Therefore, completion is expected to solve the non-
confluence of TRSs obtained by the inversion compiler.

In Section 3, we propose a notion of operationally innermost reduction of DC-
TRSs that corresponds to call-by-value interpretation of functional programs, and
we show that simulation-completeness with respect to innermost reduction is pre-
served by Ohlebusch’s unraveling if the DCTRSs are restricted to functional pro-
grams having let-like structures.

In Section 4, we propose a modification of the Knuth-Bendix completion pro-
cedure, by adding a side condition to the orientation phase. Given a confluent
and operationally terminating DCTRS, the modified completion procedure takes
the unraveled TRSs as input. When the procedure halts successfully, it returns
a convergent TRS that is computationally equivalent to the DCTRS. To obtain
innermost-convergent TRSs from the unraveled TRSs of operationally terminating
DCTRSs that are not confluent but innermost-confluent, we simplify the modified
completion procedure by prohibiting the modified procedure to use two basic func-
tions (composition and simplification), and by giving an additional side condition
to the orientation phase. The additional condition restricts orientable equations to
equations that are oriented without overlaps with other rewrite rules.

In Section 5, we first show a sufficient condition of constructor TRSs from which
the inversion compiler generates (innermost-)convergent DCTRSs. Next, we de-
scribe an implementation of the modified completion procedure, and the experi-
ments for the unraveled TRSs of DCTRSs obtained by the inversion compiler [24]
from injective functions shown by Kawabe et al. [9]. Finally, we illustrate an infor-
mal translation of the non-overlapping TRSs obtained by the procedure back into
functional programs.

In this paper, we do not consider sorts. However, the framework in this paper
can be extended to many-sorted systems as usual. All proofs can be found in the
full version of this paper [21].

2 Preliminaries

Here, we will review the following basic notations of term rewriting [3,27].
Throughout this paper, we use V as a countably infinite set of variables. The

set of all terms over a signature F and V is denoted by T (F ,V). The set of all
variables appearing in the terms t1, . . . , tn is represented by Var(t1, . . . , tn). The
identity of terms s and t is denoted by s ≡ t. For a term t and a position p of t,
the notation t|p represents the subterm of t at p. The function symbol at the root
position ε of t is denoted by root(t). The notation C[t1, . . . , tn]p1,...,pn represents
the term obtained by replacing each � at position pi of an n-hole context C[ ] with
term ti for 1 ≤ i ≤ n. The domain and range of a substitution σ are denoted by
Dom(σ) and Ran(σ), respectively, and the application σ(t) of σ to t is abbreviated
to tσ. The composition σθ of substitutions σ and θ is defined as σθ(x) = θ(σ(x)).
Given terms s and t, we write s A∼ t if there are some C[ ] and θ such that s ≡ C[tθ].

An (oriented) conditional rewrite rule over F is a triple (l, r, c), denoted by
l → r ⇐ c, such that l is a non-variable term in T (F ,V), r is a term in T (F ,V),
and c is of the form of s1 → t1 ∧ · · · ∧ sn → tn (n ≥ 0) with terms si and ti
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in T (F ,V). In particular, the conditional rewrite rule l → r ⇐ c is said to be
an (unconditional) rewrite rule if n = 0, and we may abbreviate it to l → r. We
sometimes attach a unique label ρ to a rule l → r ⇐ c by denoting ρ : l → r ⇐ c,
and we use the label to refer to the rule. An (oriented) conditional rewriting system
(CTRS, for short) R over a signature F is a finite set of conditional rewrite rules
over F . Note that R is a TRS if all rules in R are unconditional. The rewrite
relation of R is denoted by −→R. To specify the applied position p and rule ρ, we
write −→p

R or −→[p,ρ]
R . We write −→ε<

R if p is not the root position ε. A conditional
rewrite rule ρ : l → r ⇐ s1 → t1 · · · sk → tk is called deterministic if Var(r) ⊆
Var(l, t1, . . . , tk) and Var(si) ⊆ Var(l, t1, . . . , ti−1) for 1 ≤ i ≤ k. The CTRS R is
called a deterministic CTRS (DCTRS, for short) if all rules in R are deterministic.
A notion of operational termination of DCTRSs is defined via the absence of infinite
well-formed proof trees in some inference system [14]: a CTRS R is operationally
terminating (OP-SN, for short) if for any terms s and t, any proof tree attempting
to prove that s ∗−→R t cannot be infinite.

Let → be a reduction over terms in T (F ,V). Then, the set of normal forms
with respect to → is denoted by NF→(F ,V). The binary relation ∗−→! is defined as
{ (s, t) | s ∗−→ t, t ∈ NF→(F ,V) }.

Let R be a CTRS over F . The sets DR and CR of all defined symbols and all
constructors of R are defined as DR = {root(l) | l→ r ⇐ c ∈ R} and CR = F \DR,
respectively. Terms in T (CR,V) are called constructor terms of R. The CTRS R

is called a constructor system if every rule f(t1, . . . , tn) → r ⇐ c in R satisfies
{t1, . . . , tn} ⊆ T (CR,V).

We use the notion of context-sensitive reduction in [13]. A replacement mapping
µ is a mapping from a signature F to a set of natural numbers such that µ(f) ⊆
{1, . . . , n} for n-ary symbols f in F . When µ(f) is not defined explicitly, we assume
that µ(f) = {1, . . . , n}. The set Oµ(t) of reducible positions in t is defined as follows:
Oµ(x) = ∅ where x ∈ V, and Oµ(f(t1, . . . , tn)) = {ip | i ∈ µ(f), p ∈

⋃
j∈µ(f)Oµ(tj)}.

The context-sensitive reduction of the context-sensitive TRS (R,µ) of a TRSR and a
replacement map µ is denoted by −→(R,µ): −→(R,µ) = {(s, t) | s−→p

R t, p ∈ Oµ(s)}. The
innermost reduction of −→(R,µ) is denoted by −→

i (R,µ): −→i (R,µ) = {(s, t) | s −→p
R t, p ∈

Oµ(s), (∀q > p. q ∈ Oµ(s) implies that s|q is irreducible)}.
Let li → ri (i = 1, 2) be two rules whose variables have been renamed such that

Var(l1, r1)∩Var(l2, r2) = ∅. Let p be a position in l1 such that l1|p is not a variable
and let θ be a most general unifier of l1|p and l2. This determines a critical pair
(r1θ, (l1θ)[r2θ]p). If the two rules are renamed versions of the same rewrite rule, we
do not consider the case p = ε. If p = ε, then the critical pair is called an overlay .
If two rules give rise to a critical pair, we say that they overlap. We denote the set
of critical pairs constructed by rules in a TRS R by CP(R). We also denote the set
of critical pairs between rules in R and another TRS R′ by CP(R,R′). Moreover,
CPε(R) denotes the set of overlays of R.

Let R and R′ be CTRSs such that their normal forms are computable, and T

be a set of terms. Roughly speaking, R′ is computationally equivalent to R with
respect to T if there exist mappings φ and ψ such that if R terminates on a term
s ∈ T admitting a unique normal form t, then R′ also terminates on φ(s) and for
any of its normal forms t′, we have ψ(t′) = t [30]. In this paper, we assume that φ
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and ψ are the identity mappings.
Let −→

1
and −→

2
be two binary relations on terms, and T ′ and T ′′ be sets of terms.

We say that −→
1

= −→
2

in T ′×T ′′ (−→
1
⊇ −→

2
in T ′×T ′′, respectively) if −→

1
∩(T ′×T ′′)

= −→
2
∩ (T ′ × T ′′) (−→

1
∩ (T ′ × T ′′) ⊇ −→

2
∩ (T ′ × T ′′), respectively). Especially, we

say that −→
1

= −→
2

in T ′ (and −→
1
⊇ −→

2
in T ′) if T ′ = T ′′.

An equation over a signature F is a pair (s, t), denoted by s ≈ t, such that
s and t are terms in T (F ,V). We write s ' t for representing s ≈ t or t ≈ s.
The equational relation with respect to a set E of equations is defined as ↔E =
{ (C[sσ], C[tσ]) | s ' t ∈ E }.

Finally, we introduce the Knuth-Bendix completion procedure [11,3,31].

Definition 2.1 Let E be a finite set of equations over a signature F , and � be a
reduction order. Let E(0) = E, R(0) = ∅ and i = 0, we apply the following steps:

1. (Orientation) select s ' t ∈ E(i) such that s � t;

2. (Composition) R′ := {l→ r′ | l→ r ∈ R(i), r
∗−→
i

!
R(i)∪{s→t} r

′ };

3. (Deduction) E′ := (E(i) \ {s ' t}) ∪ CP({s→ t}, R′ ∪ {s→ t});
4. (Collapse) R(i+1) := {s→ t} ∪ {l→ r | l→ r ∈ R′, l 6A∼s};
5. (Simplification & Deletion)
E(i+1) := {s′′ ≈ t′′ | s′ ≈ t′ ∈ E′, s′

∗−→
i

!
R(i+1)

s′′ 6≡ t′′ ∗←−
i

!
R(i+1)

t′ };

6. if E(i+1) 6= ∅ then i := i+ 1 and go to step 1, otherwise output R(i+1).

Note that the procedure does not always halt. Suppose that the procedure halts
successfully at i+1 = k (hence E(k) = ∅). Then, R(k) is convergent, and R(k) satisfies
∗↔E = ∗↔R(k)

[3]. Note that when there is no rule to select at the Orientation

step, the procedure halts in failure. Note that Composition and Collapse are
used for efficiency, and the resulting systems are convergent even if Composition

and Collapse are skipped.

3 Unraveled TRSs with Call-by-Value Interpretation

In this section, we propose a notion of operationally innermost reduction of DCTRSs
that corresponds to call-by-value interpretation of functional programs, and we show
that simulation-completeness with respect to innermost reduction is preserved by
Ohlebusch’s unraveling if the DCTRSs are restricted to functional programs having
let-like structures.

We first give the definition of Ohlebusch’s unraveling [26]. Given a finite set X
of variables, we denote by −→X the sequence of variables in X without repetitions (in
some fixed order).

Definition 3.1 Let R be a DCTRS over a signature F . For every conditional
rewrite rule ρ : l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk, let |ρ| denote the number k
of conditions in ρ. For every conditional rule ρ ∈ R, we prepare k ‘fresh’ function
symbols Uρ

1 , . . . , U
ρ
k not in F , called U symbols, in the transformation. We transform

ρ into a set U(ρ) of k + 1 unconditional rewrite rules as follows:

U(ρ) =
{
l→ Uρ

1 (s1,
−→
X1), U

ρ
1 (t1,

−→
X1)→ Uρ

2 (s2,
−→
X2), · · · , Uρ

k (tk,
−→
Xk)→ r

}
6



Nishida

where Xi = Var(l, t1, . . . , ti−1). The system U(R) =
⋃

ρ∈R U(ρ) is a TRS over the
extended signature FU = F ∪ DU where DU = {Uρ

i | ρ ∈ R, 1 ≤ i ≤ |ρ|}.

Note that the definition of U is essentially equivalent to that in [26,29].
An unraveling U is simulation-sound (simulation-preserving and simulation-

complete, respectively) for a DCTRS R over F if ∗−→R ⊆
∗−→U(R) in T (F ,V) ( ∗−→R

⊇ ∗−→U(R) and ∗−→R = ∗−→U(R) in T (F ,V), respectively). Note that the simulation-
preserving property is sometimes called simulation-completeness in some papers,
and it is a necessary condition of being unravelings. Roughly speaking, the com-
putational equivalence is equivalent to the combination of simulation-completeness
and normal-form uniqueness. The unraveling U is not simulation-sound for every
DCTRS [27]. To avoid this difficulty of non-‘simulation-soundness’ of U, a restric-
tion to the rewrite relations of the unraveled TRSs is shown in [29], which is done by
the context-sensitive condition given by the replacement map µ such that µ(Uρ

i ) =
{1} for every Uρ

i in Definition 3.1. We denote the context-sensitive TRS (U(R), µ)
by Ucs(R). We consider Ucs as an unraveling from DCTRSs to context-sensitive
TRSs.

Theorem 3.2 ([29]) For every DCTRS R over F , Ucs is simulation-complete, that
is, ∗−→R = ∗−→Ucs(R) in T (F ,V).

To apply completion procedures to unraveled TRSs, we expect that the un-
raveling U is simulation-complete without the context-sensitivity. To this end, we
propose an ‘innermost-like’ reduction of DCTRSs, called operationally innermost
reduction. Let R be an operationally terminating (OP-SN) DCTRS. The n-level
operationally innermost reduction −−−→

(n),i R is defined as follows:

• −−→
(0),i R = ∅, and

• −−−−→
(n+1),i R = −−−→

(n),i R ∪ { (C[lσ], C[rσ]) | l → r ⇐ s1 → t1 ∧ · · · sk → tk ∈ R,∀u C

lσ. u ∈ NF−→R
(F ,V),∀i. siσ

∗−−−→
(n),i

!
R tiσ }.

The operationally innermost reduction −→
i R of R is defined as

⋃
i≥0 −−→(i),i R. Note that

if R is a TRS then −→
i R is equivalent to the ordinary innermost reduction. Note that

the ordinary definition of innermost reduction is not well-defined for every CTRS
[8]. However, both the ordinary and operationally innermost reductions of OP-SN
CTRSs are well-defined. R is called innermost-confluent (innermost-convergent) if
−→
i R is confluent.

Let R be a DCTRS. Terms in {u1, . . . , un, t1, . . . , tk | f(u1, . . . , un)→ r ⇐ s1 →
t1 ∧ · · · ∧ sk → tk ∈ R} \V are called patterns (in R). We denote the set of patterns
in R by Pat(R). It follows from the definition of U that Pat(R) = Pat(U(R)) up to
variable renaming. Patterns represents structures of data by means of matching.
Especially, in innermost reductions, patterns matches normal forms only.

Unfortunately, Ucs is not simulation-preserving for every DCTRS with respect
to the normalizing innermost reduction ∗−→

i
!. This is because not all normal form

of R are normal form of Ucs(R), that is, NF−→R
(F ,V) 6⊆ NF−→Ucs(R)

(F ,V). To
preserve the simulation-preserving property, Ucs(R) must have the same pattern-
matching capability with R, that is, if an instance pθ of a pattern p is irreducible
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by R then pθ′ is also irreducible by Ucs(R) for every substitution θ′ such that xθ
∗−→
i

!
Ucs(R) xθ

′ for all x ∈ Dom(θ). When all patterns are constructor terms (that
is, U(R) is a constructor system), R and U(R) have the same pattern-matching
capability. However, in examples of program inversion, a primitive operator du that
requires equality check is used: du(〈x〉) = 〈x, x〉, du(〈x, x〉) = 〈x〉, and du(〈x, y〉) =
〈x, y〉 if x 6= y. This operator is encoded as the following terminating TRS:

Rdu =

 Du(〈x〉)→ 〈x, x〉, Du(〈x, y〉)→ EqChk(EQ(x, y)),

EqChk(〈x〉)→ 〈x〉, EqChk(EQ(x, y))→ 〈x, y〉, EQ(x, x)→ 〈x〉


Note that any system containing Du is not a constructor system. Since Rdu has no
overlay, Rdu is locally innermost-confluent , and hence, Rdu is innermost-confluent
[12]. Under the innermost reduction, Rdu can simulate computation of du.

One of the sufficient conditions to have the same pattern-matching capability is
to satisfy all of the following conditions:

• all rules defining g ∈ {g ∈ DR | g appears in Pat(R)} are unconditional and every
proper subterm of the left-hand sides is a variable, and

• every rule l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk represents a let-like structure, that
is, Var(ti) ∩ Var(l, t1, . . . , ti−1) = ∅ for 1 ≤ i ≤ k.

We call R pattern-stable if R satisfies all of these conditions. The let-like struc-
ture guarantees that Var(ti) ∩ {x1, . . . , xn} = ∅ for every Uρ

i (ti, x1, . . . , xn) [23,25].
Pattern-stability is essential for DCTRSs that are used for modeling functional pro-
grams with let-like structures and equality check.

Theorem 3.3 Let R be a pattern-stable OP-SN DCTRS over a signature F , and
s and t be terms in T (F ,V). Then, s ∗−→

i
!
R t implies s ∗−→

i
!
Ucs(R) u for some u in

T (FU,V) such that t ∗−→
i

!
Ucs(R) u.

Pattern-stability is also a sufficient condition for simulation-soundness. On the
other hand, the non-erasing property of R is another sufficient condition. Here, we
call R strongly non-erasing if every rule l → r ⇐ s1 → t1 ∧ · · · ∧ sk → tk satisfies
all of the following conditions [23,25]:

• Var(l) ⊆ Var(r, s1, t1, . . . , sk, tk), and
• Var(ti) ⊆ Var(r, si+1, ti+1, . . . , sk, tk) for 1 ≤ i ≤ k.

Any U symbol is not consumed by pattern-matching. The non-erasing property
guarantees that no normal form containing U symbols appears along the reduction
s

∗−→
i

!
Ucs(R) t ∈ T (F ,V); if a normal form containing a U symbol appears in the

sequence, the non-erasing property ensures that it remains in t.

Theorem 3.4 Let R be a pattern-stable or strongly non-erasing OP-SN DCTRS
over a signature F , and s and t be terms in T (F ,V). Then, s ∗−→

i
!
Ucs(R) t implies s

∗−→
i

!
R t.

Context-sensitivity is not necessary for innermost reduction of Ucs(R).

Theorem 3.5 For every DCTRS R over F , ∗−→
i U(R) = ∗−→

i Ucs(R) in T (F ,V) ×
T (FU,V).
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Thanks to Theorem 3.5, when evaluating terms by the innermost reduction of
Ucs(R), we can treat U(R) without the context-sensitivity determined by U.

For pattern-stable OP-SN DCTRSs, we have the following simulation-soundness
and weak simulation-preserving property.

Corollary 3.6 Let R be a pattern-stable OP-SN DCTRS over a signature F , and
s and t be terms in T (F ,V). Then,

(i) s
∗−→
i

!
R t implies s ∗−→

i
!
U(R) u for some u in T (FU,V) such that t ∗−→

i
!
U(R) u, and

(ii) s
∗−→
i

!
U(R) t implies s ∗−→

i
!
R t.

Corollary 3.6 does not mean that s ∗−→
i

!
U(R) u implies s ∗−→

i R t for some t such that
t

∗−→
i U(R) u and t is a normal form of R. This weakness of the simulation-preserving

property does not happen when U(R) is innermost-confluent. Therefore, getting
innermost-confluence is important for unraveled TRSs.

4 Completion of Unraveled TRSs

In this section, by adding a side condition to Orientation, we propose a modifica-
tion of the ordinary Knuth-Bendix completion procedure for the unraveled TRSs of
convergent DCTRSs. The modified procedure transforms the unraveled TRSs into
convergent TRSs that are computationally equivalent to the DCTRSs. Moreover,
to adapt the modified procedure to DCTRSs that are not confluent but innermost-
confluent, we add another side condition to Orientation.

The usual purpose of completion procedures is to generate convergent TRSs
that are equivalent to given equation sets. In contrast to the usual purpose, we
expect completion procedures to transform unraveled TRSs U(R) into convergent
TRSs that are computationally equivalent to the original DCTRSs R. To this
end, we start the completion procedure from the initial pair (CP(U(R)), { l → r ∈
U(R) | 6 ∃l′ → r′ ∈ U(R), l A∼ l′ }) where U(R) ⊆ �. Moreover, consistency of the
normal forms of U(R) (that is, they are also normal forms of the resulting system)
is necessary for preserving computational equivalence of R. For this requirement,
we add the side condition ‘root(s) is a U symbol’ to Orientation:

1. (Orientation†) select s ≈ t ∈ E(i) such that s � t and root(s) is a U symbol;

Due to the side condition of Orientation†, and due to the basic characteristic of
the ordinary completion procedure [3], the modified completion procedure produces
convergent TRSs that are computationally equivalent to the input TRSs when it
halts successfully.

Theorem 4.1 Let R be an OP-SN DCTRS over F , and � be a reduction order such
that U(R) ⊆ �. Let E0 = CP(U(R)), R0 = {l→ r ∈ U(R) | 6 ∃l′ → r ∈ U(R), lA∼l′},
and R′ be a TRS obtained by the modified completion procedure from (E0, R0) with
�. Then, (1) R′ is convergent, (2) NF−→U(R)

(F ,V) = NF−→
R′ (F ,V), and (3) ∗−→!

U(R)

= ∗−→!
R′ in T (F ,V).

Since NF−→S
(F ,V) = NF−→

i S
(F ,V) (S is either U(R) or R), it holds in Theorem

4.1 that ∗−→
i

!
U(R) = ∗−→

i
!
R′ in T (F ,V).

9
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Example 4.2 Consider the non-convergent TRS U(Inv(R1)) in Section 1 again.
Given the lexicographic path order (LPO) �lpo determined by the precedence >

with InvSnoc > U1 > :: > nil > 〈 〉, we obtain the following convergent and non-
overlapping TRS by the modified completion procedure (in 4 cycles):

R2 =

 InvSnoc(x ::ys)→ U1(InvSnoc(ys), x, ys),

U1(〈xs, y〉, x, ys)→ 〈x ::xs, y〉, U1(InvSnoc(nil), x, nil)→ 〈nil, x〉


Since the procedure removes the rule InvSnoc([y]) → 〈nil, y〉 from U(Inv(R1)), the
resulting TRS R2 is non-overlapping.

Unfortunately, the modified completion procedure does not always halt even if
the inputs are restricted to unraveled TRSs. For example, the modified procedure
does not halt for the unraveled TRS obtained from Example 7.1.5 in [27] although
there exists an appropriate convergent TRS that is computationally equivalent to
the corresponding DCTRS.

Confluence of R is necessary for the modified completion procedure to halt ‘suc-
cessfully’. Note that confluence of R is not sufficient for the procedure to ‘halt’. In
other words, the procedure halts (or keeps running) ‘unsuccessfully’ if R is not con-
fluent. If R is not confluent, then we have t1

∗←−U(R) s
∗−→U(R) t2 and t1 6≡ t2 for some

s, t1 and t2 in T (F ,V). The added side condition ‘root(s) is a U symbol’ prevents
t1 and t2 from being joinable. From this observation, the modified procedure can
be considered as a method to show confluence of R: if the procedure succeeds, then
R is confluent.

As stated above, we would like to transform DCTRSs on call-by-value interpre-
tation into convergent TRSs that are computationally equivalent to the DCTRSs.
Moreover, the modified completion procedure always fails for DCTRSs that are not
confluent but innermost-confluent, such as DCTRSs containing Rdu.

To obtain innermost-convergent systems that are computationally equivalent
to TRSs containing Rdu, applying completion procedures to the TRSs appears to
be effective just as in the case of convergent TRSs. However, there is a difficulty
associated with innermost reduction. The difficulty is that innermost reduction is
not closed under substitutions. When applying the completion procedure to Rdu,
the rules Du(〈x, y〉) → EqChk(EQ(x, y)) is transformed into Du(〈x, y〉) → 〈x, y〉.
Given a ground normal form t, the resulting system cannot simulate the reduction
Du(t, t) ∗−→

i Rdu
〈t〉 due to the lack of Du(〈x, y〉) → EqChk(EQ(x, y)). To remove

this troublesome problem from the modified completion procedure for innermost
reduction, we prohibit the procedure to use the two operations Composition and
Simplification, and give an additional side condition to Orientation† as follows:

1. (Orientation‡) select s ≈ t ∈ E(i) such that s � t, root(s) is a U symbol,
and CP({s→ t}, R(i) ∪ {s→ t}) = ∅;

The additional condition means that the oriented rule s→ t is not overlapping with
other rules in R(i) ∪{s→ t}. Thus, Deduction does not add any equations to the
equation set E(i) but removes an equation. Since no U symbol appears in the left-
hand side l in T (F ,V) from the definition of U, and since the added rules are not
overlapping with other rules, Collapse removes no rules from the rule set R(i). If
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E has no equation of the form s ≈ s, Deletion step removes no equations from the
equation set. From this observation, the modified procedure with Orientation‡ is
simplified as Definition 4.3 shown later.

Before simplifying the modified procedure, we describe the relation between
U(R) and S with respect to the innermost reduction. No rule l → r ∈ U(R) such
that there exists a rule l′ → r′ with l B l′θ for some substitution θ is used in −→

i U(R)
because no instance of l is an innermost redex. For this reason, we restrict the
initial set of rules to U(R) \ S. Roughly speaking U(R) \ S is the set of rules that
are usable for −→

i U(R).

Definition 4.3 Let R be an OP-SN DCTRS over F , and � be a reduction order
such that U(R) ⊆ �. Let S = { l → r ∈ U(R) | 6 ∃l′ → r ∈ U(R), l A∼ l′ }, E(0) =
{s ≈ t | s ' t ∈ CPε(U(R) \ S), s 6≡ t}, R(0) = { l → r ∈ U(R) \ S | 6 ∃l′ → r ∈
U(R) \ S, l A∼ l′ }, and i = 0, then we apply the following steps:

1. (Orientation‡) select s ≈ t ∈ E(i) such that s � t, root(s) is a U symbol,
and CP({s→ t}, R(i) ∪ {s→ t}) = ∅;

2. R(i+1) := {s→ t} ∪ R(i), and E(i+1) := E(i) \ {s ' t};
3. if E(i+1) 6= ∅ then i := i+ 1 and go to step 1, otherwise output R(i+1).

We call this procedure the simplified completion procedure.

It is clear that E(i) ⊃ E(i+1) for every i ≥ 0. Therefore, the simplified completion
procedure always halts. Note that the simplified procedure doest not succeed for
all input.

Theorem 4.4 Let R be a pattern-stable OP-SN DCTRS over F , and � be a re-
duction order such that U(R) ⊆ �. Let R′ be a TRS obtained by the simplified
completion procedure from R and �. Then all of the following hold: (1) R′ is
innermost-convergent, (2) NF−→U(R)(F ,V) = NF−→

R′ (F ,V), and (3) ∗−→
i

!
U(R) =

∗−→
i

!
R′ in T (F ,V).

Note that (1) and (3) implies (2). The simplified procedure succeeds for
U(Inv(R1)) as well as for Example 4.2.

Similarly to the modified completion procedure, innermost-confluence of R is
necessary for the simplified completion procedure to halt ‘successfully’. Therefore,
the simplified procedure is a method to show innermost-confluence of R;

5 Completion after Program Inversion

In this section, we apply the modified and simplified completion procedures to
DCTRSs generated by the partial inversion compiler [25], that is, we apply the
procedures as a post-processor of U(Inv(·)) to the unraveled TRSs. First, we briefly
introduce the feature of inverse systems for injective functions. Then, we show the
results of experiments by an implementation of the framework.

We employ the partial inversion Inv in [25] that generates a partial inverse
CTRS from a pair of a given constructor TRS and a specification, which we do
not describe in detail here. For a defined symbol F , the defined symbol InvF
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introduced by Inv represents a full inverse of F . We assume that constructor TRSs
define main injective functions, and that the specifications require full inverses of
the main functions.

5.1 Inverse DCTRSs of Injective Functions

We first define injectivity of TRSs [22], and then give a sufficient condition for input
constructor TRSs whose inverse DCTRSs generated by Inv are convergent.

Definition 5.1 Let R be a terminating and innermost-confluent constructor TRS.
A defined symbol F of R is called injective (with respect to normal forms) if the
binary relation {(〈s1, . . . , sn〉, t) | s1, . . . , sn, t ∈ NF−→R

(F ,V), F (s1, . . . , sn) ∗−→R t}
is an injective mapping. R is called injective (with respect to normal forms) if all of
its defined symbols are injective.

For example, the TRS R1 in Section 1 is injective. Note that every injective
TRS is non-erasing [22].

The following defined symbol Reverse computes the reverses of given lists:

R4 =

 Reverse(xs)→ Rev(xs, nil),

Rev(nil, ys)→ ys, Rev(x ::xs, ys)→ Rev(xs, x ::ys)


Reverse is injective but Rev is not. Thus, R4 is not injective. In this case, the
inverse TRS U(Inv(R4)) is not terminating because U(Inv(R4)) contains the rule
InvRev(z) → U4(InvRev(z), z). For this reason, we restrict ourselves to injective
functions whose inverse TRSs are terminating. In [22], a sufficient condition has
been shown for the full inversion compiler in [24] to generate convergent inverse
DCTRSs from injective TRSs. The condition is also effective for the partial inversion
compiler Inv [25].

Theorem 5.2 Let R be a non-erasing, terminating and innermost-confluent con-
structor TRS.

(i) If F ∈ DR is injective, then for all t, t1 and t2 ∈ NF−→Inv(R)
(F ,V), t1

∗←−
i Inv(R)

InvF (t) ∗−→
i Inv(R) t2 implies t1 ≡ t2.

(ii) Suppose that for every rule F (u1, . . . , un)→ r in R, if r is not a variable then
the root symbol of r does not depend 4 on F . If Inv(R) ∩ R = ∅ then the
DCTRS Inv(R) is OP-SN.

Note that if the DCTRS Inv(R) is OP-SN then the TRS U(Inv(R)) is ter-
minating [14]. Theorem 5.2 (i) shows that if Inv(R) is OP-SN, then Inv(R) has
innermost-confluence that is necessary for successful runs of the simplified comple-
tion procedure. Note that Inv(R) is confluent if R is convergent [25]. When R does
not satisfy the condition in Theorem 5.2 (ii), we directly check the termination of
U(Inv(R)). In other words, when R satisfies the condition in Theorem 5.2 (ii), we
are free of the termination check of U(Inv(R)) that is less efficient than the check
of satisfying the condition.

4 An n-ary symbol G of R depends on a symbol F if (G, F ) is in the transitive closure of the relation
{ (G′, F ′) | G′(· · ·) → C[F ′(· · ·)] ∈ R }.
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Table 1
the results of the experiments

CR SN by modified completion proc. simplified completion proc.
example

by [2] Th.5.2 result (cycles, time) call ¬OVL result call ¬OVL

du fail (1c, 0.71s) 1 — success (0c, 0.71s) 1

snoc
√

success (1c, 2.08s) 2
√

success (1c, 2.07s) 2
√

snocrev
√

success (2c, 4.29s) 3
√

success (2c, 4.28s) 3
√

double fail (1c, 2.84s) 2 — success (1c, 2.83s) 2

mirror fail (3c, 5.97s) 3 — success (2c, 5.96s) 3

zip
√ √

success (0c, 1.04s) 1
√

success (0c, 1.03s) 1
√

inc
√

success (1c, 2.80s) 2
√

success (1c, 2.80s) 2
√

octbin
√ √

success (0c, 7.33s) 1
√

success (0, 7.33s) 1
√

treelist
√

success (4c, 159.02s) 5 fail (2c, 5.47s) 2 —

print-sexp success (6c, 28.20s) 7
√

success (6c, 28.28s) 7
√

print-xml fail (3c, 9.49s) 3 — success (2c, 9.47s) 3

5.2 Experiments

In this subsection, we report the results of applying implementations of the modified
and simplified completion procedures to 10 of 15 examples shown in [9]. 5 These 15
examples are introduced for the experiments of the inversion compiler LRinv [9,10]
where LRinv succeeds in inverting all of them. Those examples are written in
the scheme script Gauche. The inverse TRSs of the scripts snoc, snocrev and
reverse correspond to the TRSs U(Inv(R1)), R3 and U(Inv(R4)), respectively.
The constructor TRSs corresponding to the 5 scripts (reverse and so on) are not
injective and the inverse TRSs obtained from them are not terminating. For this
reason, we excluded those non-terminating examples from our experiments.

For some examples, there exists no appropriate LPO to guarantee termination
of the input TRSs. For this reason, we employ the termination check ‘(

⋃i
j=0R(i))∪

{s→ t} is terminating’ instead of the input reduction orders, following the approach
in [34]. The implementations are written in Standard ML of New Jersey, and they
were executed under OS Vine Linux 4.2, on an Intel Pentium 4 CPU at 3 GHz and
1 GByte of primary memory. By the system call in SML/NJ, the implementations
consult with AProVE 1.2 [6] as a termination prover at the Orientation step. The
implementations check termination of input TRSs in advance of the completion
procedures. The timeout for checking termination is 300 seconds in every call of
the prover. Note that 60 seconds timeout is enough, except for treelist.

The examples (double, mirror and print-xml) contain the special primitive
operator du described in Section 4. Hence, they are not confluent but innermost-
confluent. The operator du is an inverse of itself [9,10]. Thus, the TRS Rdu is also
an inverse system of itself. For this reason, exceptionally, the inversion compiler
does not produce any rules of InvDup but introduces Du instead of InvDup.

Due to the syntactic properties provided by the inversion compiler, all inverse
DCTRSs in the experiments are pattern-stable and strongly non-erasing. Thus, the
procedures in this paper are applicable to all of them.

Table 1 summarizes the results of the experiments for our approach running on

5 Unfortunately, the site shown in [9] is not accessible now. The examples are also described briefly as
functional programs in [10], and some of the detailed programs can be found in [10].
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10 of the 15 examples previously mentioned, which were translated by hand into
TRSs. 6 The second column labeled with ‘CR by [2]’ shows whether the input TRS
of the example is in the class shown in [2], in which the corresponding inverse TRS
is orthogonal and thus confluent. In that case, the implementations only check
termination of the inverse TRS. The third column labeled with ‘SN by Th. 5.2’
shows whether the input TRS satisfies the conditions in Theorem 5.2 (ii), that is,
the corresponding inverse TRSs are terminating. Columns 4–6 show the results
of the modified completion procedure. The fourth column shows the results of
the modified completion (‘success’ or fail’) with the numbers of running ‘cycles’ in
the sense of Definition 2.1, and with the average time (seconds) of 5 trials. The
number of cycles is the same as the number of applications of Orientation. As
described above, the implementation checks the termination of input TRSs before
the completion procedure starts. Thus, we have the results ‘success (0c,· · ·) and
1 call of provers’. The sixth column labeled by ‘¬OVL’ shows whether or not the
resulting TRSs are non-overlapping (

√
means the resulting is non-overlapping, and

‘—’ means no resulting TRS). None of the resulting TRSs has overlays while some
of them are overlapping. Columns 7–9 show the results of the simplified completion
procedure, and the meaning of those columns is the same as columns 4–6.

5.3 Translation Back into Functional Programs

In general, it is difficult to decide a priority of rewrite rules. However, we do
not have to consider such a priority for R2 that is computationally equivalent to
Inv(R1) because R2 is not only confluent but also non-overlapping. On the other
hand, every convergent constructor TRS can be easily translated back into a func-
tional program. However, it is not easy to translate convergent TRSs that are not
constructor systems, into functional programs even if the TRSs are non-overlapping.
The reason is that some rules contains non-‘well-formed’ patterns in their left-hand
sides, for instance, InvSnoc(nil) in U(Inv(R1)).

In this subsection, we show a translation from R2 into a SML program. Such
a translation has not been automated yet but we believe that the automation is
feasible.

The U symbols Uρ
i introduced by the unraveling are often considered to express

let, if or case clauses in functional programming languages. In the rewrite rules
of R2, the U symbol U1 plays the role of a case clause as follows:

case InvSnoc( ys ) of (xs,y) => ( x::xs, y )
| InvSnoc( [] ) => ( [] , y )

where InvSnoc( [] ) is not well-formed in the syntax of Standard ML. It is natural
to write this fragment by introducing the extra case clause for ys as follows:

case ys of [] => ( [], y )
| _ => (case InvSnoc( ys ) of (xs,y) => ( x::xs, y ) )

Thus, we translate the TRS R2 into the following program:

fun InvSnoc( x::ys ) =

6 The detail will be available from “http://www.trs.cm.is.nagoya-u.ac.jp/repius/experiments/”.
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case ys of [] => ( [], x )
| _ => (case InvSnoc(ys) of (xs,y) => ( x::xs, y ) );

Other approaches to translations are possible. For example, we can consider U1 as
the composition of if and let clauses or as a ‘local function’ defined in InvSnoc.

In all of the 10 examples, we succeeded in translating by hand the resulting con-
vergent TRSs back into SML programs by means of the mechanism in this subsection
although the resulting systems of double, mirror, treelist, and print-xml have
overlapping.

6 Concluding Remarks

In this paper, we have shown that completion procedures are useful in generating
(innermost-)convergent inverse TRSs of injective TRSs. The completion procedures
can be also used for checking whether or not a (innermost-)convergent constructor
TRS is injective. This is because if a given convergent constructor TRS is not injec-
tive, then the procedures never succeeds for the TRS. It is known to be undecidable
in general whether or not a function is injective [5]. In [17], however, it is shown
that injectivity of linear treeless functions is decidable. On the other hand, some of
the examples we mentioned in the experiments are non-linear or non-treeless while
the method in this paper is not decidable.

Completion procedures are effective for solving word problems, for transforming
equations into equivalent convergent systems, or for proving inductive theorems.
As far as we know, there is no application of completion to program modification,
and there is no program transformation based on unravelings in order to produce
computationally equivalent systems.

The modified completion procedure in this paper does not succeed for every con-
fluent and OP-SN DCTRSs while the latest transformation [30] based on Viry’s ap-
proach [33] always succeeds. Consider the example in Section 1 again. By the trans-
formation in [30], we obtain the following convergent TRS instead of U(Inv(R1)):

InvSnoc([y], z)→ {〈nil, y〉},

InvSnoc(x ::ys,⊥)→ InvSnoc(x ::ys, {InvSnoc(ys,⊥)}),

InvSnoc(x ::ys, {〈xs, y〉})→ {〈x ::xs, y〉},

InvSnoc({xs}, z)→ {InvSnoc(xs,⊥)}, {{x}} → {x}


∪{ c(x1, . . . , {xi}, . . . , xn)→ {c(x1, . . . , xn)} | c ∈ {::, 〈, 〉} }

where { } and ⊥ are special function symbols not in the original signature. In
this system, the term InvSnoc([a, b, c],⊥) has a unique normal form {〈[a, b], c〉}.
As described in Section 1, however, it is difficult to translate the convergent TRS
into a functional program because the system contains special symbols { } and ⊥,
and overlapping rules. On the other hand, the modified completion procedure in
this paper unexpectedly succeeded for all the experiments where the DCTRSs are
confluent, and the resulting systems of the procedure are often non-overlapping.
Moreover, for the DCTRSs that are not confluent but innermost-confluent, we pro-
posed the simplified completion procedure but it is not yet known whether or not
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the transformation in [30] is applicable.
The inversion compiler LRinv, the closest one to the method in this paper, has

been proposed for injective functions written in a functional language [9,7,10]. This
compiler translates source programs into programs in a grammar language, and
then inverts the grammar programs into inverse grammar programs. To eliminate
nondeterminism in the inverse programs, their compiler applies LR parsing to the
inverse programs. The classes for which LR parsing and the completion procedure
work successfully are not well known, which makes it difficult to compare LRinv
and our method. However, LRinv succeeds in generating inverse functions from the
5 scripts (reverse and so on) that we excluded from the experiments, where the
main functions call non-injective functions such as the accumulator Rev. From this
fact, LRinv seems to be stronger than the method in this paper but there must be
plenty of room on improving the principle of inversion used in the partial inversion
complier in [25]. As future work, we plan to extend the partial inversion compiler
for functions with accumulators such as Rev, and we also improve the modified and
simplified completion procedures.
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Refl

s
∗−→ t

Tran

s −→ t t
∗−→ u

s
∗−→ u

Repl

s1σ
∗−→ t1σ · · · snσ

∗−→ tnσ

C[lσ] −→ C[rσ]
if l→ r ⇐ s1 → t1 ∧ · · · ∧ sn → tn ∈ R

Fig. A.1. Derivation rules for the reduction of R.

A Operational Termination of DCTRSs

Following the notion of operational termination proposed in [14], we here give a
definition of operational termination for operational innermost reduction.

Definition A.1 Let R be an OP-SN DCTRS. The set of (finite) proof trees for R
and the head of a proof tree are inductively defined as follows.

• An open goal G, where G is either s −→ t or s ∗−→ t for some terms s and t, is a
proof tree. In this case, head(G) = G is the head of the proof tree.

• A derivation tree T , denoted by
T1 · · · Tn

G
(∆), is a proof tree, where G is

as in the first case, ∆ is one of the derivation rules in Fig. A.1, and T1, . . . , Tn

are proof trees such that
head(T1) · · · head(Tn)

G
is an instance of ∆. In this

case, head(T ) = G.

A proof tree is said to be closed if it does not contain any open goals.

Definition A.2 A proof tree T is a prefix of a proof tree T ′, written in T ⊂ T ′, if
there are one or more open goals G1, . . . , Gn in T such that T ′ is obtained from T

by replacing each Gi with a derivation tree Ti such that head(Ti) = Gi. An infinite
proof tree is an infinite sequence T0, T1, · · · of finite proof trees such that Ti ⊂ Ti+1

for all i ≥ 0.

Definition A.3 A proof tree T is well-formed if it is either an open goal, a closed

proof tree, or a derivation tree of the form
T1 · · · Tn

G
(∆) where Tj is a well-

formed proof tree for all 1 ≤ j ≤ n and there is an i ≤ n such that Ti is not closed,
Tj is closed for all j < i, and Tk is an open goal for all k > i. An infinite proof tree
is well-formed if it consists of well-formed proof trees.

Operational termination is characterized by the absence of infinite well-formed
proof trees.

Definition A.4 A DCTRS R is operationally terminating if there are no infinite
well-formed proof trees.
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B Proofs

B.1 Proof of Theorem 3.3

Lemma B.1 Let F be a signature, F ′ be an extended signature of F (F ⊆ F ′), µ be
a replacement map for F ′\F such that µ(F ) = {1, . . . , n} for any n-ary symbol F ∈
F , R′ be a pattern-stable OP-SN DCTRS over F , and R be a TRS over F ′ such that
NF−→

i R
(F ,V) ⊇ NF−→

i (R′,µ)
(F ,V), and {l → r ∈ R′ | root(l) appears in Pat(R)}

⊆ R. Let σ and σ′ be substitutions such that Ran(σ) ⊆ NF−→
i R

(F ,V), Ran(σ′) ⊆
NF−→

i R
(F ′,V) and xσ ∗−→

i
!
(R′,µ) xσ

′ for all x ∈ Dom(σ). For all patterns p ∈ Pat(R),

pσ is irreducible with respect to −→
i R if and only if pσ′ is irreducible with respect to

−→
i (R′,µ).

Proof. We prove this lemma by induction on term structure of p. Since the case
of root(p) 6∈ DR can be shown straightforwardly by the induction hypothesis, we
only show the renaming case of root(p) ∈ DR.

Let p ≡ F (p1, . . . , pn) where F ∈ DR. Suppose that pσ is irreducible with
respect to −→

i R. Then, p1σ, . . . , pnσ are irreducible with respect to −→
i R since pσ is

irreducible. By the induction hypothesis, p1σ
′, . . . , pnσ

′ are irreducible with respect
to −→

i (R′,µ). Assume that pσ′ is reducible with respect to −→
i (R′,µ). Then, it follows

that pattern-stability of R′ that there is a rule F (x1, . . . , xn) → r ∈ R′. It follows
from the assumption that F (x1, . . . , xn) → r ∈ R. Hence, pσ is reducible with
respect to −→

i R. This contradicts the assumption that pσ is irreducible. Therefore,
pσ′ is irreducible with respect to −→

i (R′,µ).
On the other hand, in the case that pσ′ is irreducible with respect to −→

i (R′,µ),
we can similarly show that pσ is irreducible with respect to −→

i R. 2

Note that Lemma B.1 is applicable to not only pairs of R and Ucs(R) but also
pairs of TRSs without µ.

Theorem 3.3 is a direct consequence of the following lemma.

Lemma B.2 Let R be a pattern-stable OP-SN DCTRS over a signature F , s
and t be terms in T (F ,V), and σ and σ′ be substitutions such that Ran(σ) ⊆
NF−→R

(F ,V), Dom(σ|Var(s))∩Dom(σ|Var(t)) = ∅, and xσ ∗−→
i Ucs(R) xσ

′ for all x ∈
Dom(σ). Then, if sσ ∗−→

i
!
R tσ, then sσ′

∗−→
i

!
Ucs(R) tσ

′.

Proof. We allow −→
i R to perform as parallel reductions. We prove this lemma by

induction on the lexicographic products of the term structure s, the level n and
length k of k−−−→

(n),i R. We only show the most difficult case (cf. [23]).

Consider the following sequence:

sσ
∗−→
i

ε<,!
R lσ −−−→

(n),i R rσ
∗−→
i

!
R tσ

where ρ : l→ r ⇐ s1 → t1 ∈ R, s1σ
∗−−−−→

(n−1),i

!
R t1σ, { l→ Uρ

1 (s1,
−→
X ), Uρ

1 (t1,
−→
X )→ r }

⊆ U(R), X = Var(l), Var(l, r, s1, t1)∩ Var(s, t) = ∅, and Ran(σ) ⊆ NF−→R
(F ,V).

Let σ′ be a substitution such that xσ ∗−→
i

!
Ucs(R) xσ

′ for all x ∈ Dom(σ). Then,

by the induction hypothesis, we have sσ′ ∗−→
i

ε<,!
Ucs(R) lσ

′, s1σ′
∗−→
i

!
Ucs(R) t1σ

′, and rσ′
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∗−→
i

!
Ucs(R) tσ

′. It follows from Lemma B.1 that lσ′ is an innermost redex of Ucs(R)
and t1σ′ is a normal form of Ucs(R). Therefore, we have the following sequence:

sσ
∗−→
i

ε<
Ucs(R) sσ

′ ∗−→
i

ε<,!
Ucs(R) lσ

′ −→
i Ucs(R) U

ρ
1 (s1,

−→
X )σ

∗−→
i

ε<,!
Ucs(R) U

ρ
1 (t1,

−→
X )σ−→

i Ucs(R)rσ
′ ∗−→

i
!
Ucs(R) tσ

′.
2

B.2 Proof of Theorem 3.4

Theorem 3.4 is a direct consequence of the following lemmas.

Lemma B.3 Let R be a pattern-stable OP-SN DCTRS over a signature F , s
and t be terms in T (F ,V), and θ and θ′ be substitutions such that Ran(θ) ⊆
NF−→R

(F ,V), Ran(θ′) ⊆ NF−→Ucs(R)
(FU,V), and xθ

∗−→
i Ucs(R) xθ′ for all x ∈

Dom(θ). If s ∗−→
i

!
Ucs(R) tθ

′, then s
∗−→
i R tθ.

Proof. We allow −→
i Ucs(R) to perform as parallel reductions. We prove this lemma

by induction on the lexicographic products of the term structure s and the length
k of k−→

i Ucs(R). We only show the most difficult case (cf. [23]).
Consider the following sequence:

s
∗−→
i

ε<,!
Ucs(R) lσ

′ −→
i Ucs(R) U

ρ
1 (s1,

−→
X )σ′ ∗−→

i

ε<,!
Ucs(R) U

ρ
1 (t1,

−→
X )σ′−→

i Ucs(R)rσ
′ ∗−→

i

!
Ucs(R) tθ

′

where ρ : l→ r ⇐ s1 → t1 ∈ R, X = Var(l), and Ran(σ′) ⊆ NF−→Ucs(R)
(FU,V).

Let σ be a substitution such that Ran(σ) ⊆ NF−→
i R

(F ,V), and xσ ∗−→
i

!
Ucs(R) xσ

′

for all x ∈ Dom(σ). Then, we have rσ ∗−→
i Ucs(R) rσ

′ ∗−→
i

!
Ucs(R) tθ

′, s1σ
∗−→
i Ucs(R) s1σ

′,

and lσ ∗−→
i

ε<,!
Ucs(R) lσ

′. Since t1σ′ is irreducible with respect to −→
i Ucs(R), it follows from

Lemma B.1 that t1σ is irreducible with respect to −→
i R, and hence s1σ

∗−→
i Ucs(R) s1σ

′

∗−→
i

!
Ucs(R) t1σ

′. Then, it follows from the induction hypothesis that rσ ∗−→
i

!
R tθ, s1σ

∗−→
i

!
R t1σ, and s ∗−→

i

ε<,!
R lσ. Therefore, we have s ∗−→

i

ε<,!
R lσ

>−→
i R rσ

∗−→
i R tθ. 2

Lemma B.4 Let R be a strongly non-erasing OP-SN DCTRS over a signature F ,
and s and t be terms in T (F ,V). Then, s ∗−→

i
!
Ucs(R) t implies s ∗−→

i
!
R t.

Proof. We prove this lemma by induction on the lexicographic products of the
term structure s and the length k of k−→

i Ucs(R). We only show the most difficult case
(cf. [23]).

Consider the following sequence:

s
∗−→
i

ε<,!
Ucs(R) lθ −→i Ucs(R) U

ρ
1 (s1,

−→
X )θ ∗−→

i

ε<,!
Ucs(R) U

ρ
1 (t1,

−→
X )θ−→

i Ucs(R)rθ
∗−→
i

!
Ucs(R) t

where ρ : l → r ⇐ s1 → t1 ∈ R, X = Var(l), and Ran(θ) ⊆ NF−→Ucs(R)
(FU,V).

Since any U symbol is not consumed, it follows from non-erasingness and
context-sensitivity that Ran(θ) ⊆ T (F ,V). It is clear that NF−→Ucs(R)

(F ,V) ⊆
NF−→R

(F ,V). Thus, by the induction hypothesis, we have s ∗−→
i

ε<,!
R lθ, s1θ

∗−→
i

!
R t1θ,

and rθ ∗−→
i

!
R t. Therefore, we have s ∗−→

i

ε<,!
R lθ −→

i R rθ
∗−→
i

!
R t. 2
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B.3 Proof of Theorem 3.5

Theorem 3.5 is a direct consequence of the following lemmas.

Lemma B.5 Let R be a DCTRS over a signature F , and s and t be terms in
T (FU,V). Suppose that every term at irreducible positions of s is a normal form of
U(R). Then, all of the following hold:

• s −→
i U(R) t if and only if s −→

i Ucs(R) t, and
• if s −→

i U(R) ∪ −→i Ucs(R) t, then every term at irreducible positions of t is a normal
form of U(R).

Proof. This lemma follows from the definitions of −→
i U(R) and −→

i Ucs(R). 2

Lemma B.6 Let R be a DCTRS over a signature F , s be a term in T (F ,V), and
t be a term in T (FU,V). If s ∗−→

i U(R) ∪
∗−→
i Ucs(R) t, then every term at irreducible

positions of t is a normal form of U(R).

Proof. This lemma follows from the replacement map of Ucs(R), and the definitions
of −→

i U(R) and −→
i Ucs(R). 2

B.4 Proof of Theorem 4.1

It follows from the side condition ‘root(s) is a U symbol’ of the Orientation that
NF−→U(R)

(F ,V) = NF−→
R′ (F ,V). It is clear that there is a run of completion from

(U(R), ∅) to (E0, R0). It follows from the correctness of the completion (Theorem
7.3.5 in [3]) that R′ is convergent and ∗↔U(R) ⊆

∗−→R′ · ∗←−R′ . Let −→
1

= {(s, t) | s, t ∈
T (F ,V), s +−→R t} and −→

2
= {(s, t) | s, t ∈ T (F ,V), s +−→R′ t}. Then, we have ∗↔

1

⊆ ∗↔
2

, confluence of −→
2

, termination of −→
1

, and NF 1 = NF 2 where NF i is the set
of normal forms with respect to −→

i
. Therefore, it follows from Theorem 3.3 in [32]

that ∗−→
1

= ∗−→
2

in T (F ,V)×NF 2, and hence ∗−→!
U(R) = ∗−→!

R′ in T (F ,V). 2

B.5 Proof of Theorem 4.4

We denote U(R) \ S by ∆in(U(R)).
It follows from the side condition ‘root(s) is a U symbol’ of the Orientation

that (2) NF−→U(R)
(F ,V) = NF−→

R′ (F ,V).

We first show that (1) R′ is innermost-convergent and (4) −→
i ∆in(U(R)) ⊆ ( +−→

i
!
R′ ◦

∗←−
i

!
R′) ∪ ( ∗−→

i
!
R′ ◦ +←−

i
!
R′).

B.5.1 Theorem 4.4 (1)
It is clear that R′ is terminating.

We discuss a property of added rules (R′ \∆in(U(R))). It follows from the side
condition of Orientation‡ that every added rule s→ t ∈ R′ \∆in(U(R)) satisfies
all of the following:

• there is a critical pair s ' t ∈ E(0) = CPε(∆in(U(R))),
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• every instance sθ is always the innermost redex of R′ that is reducible only to tθ
if Ran(θ) ⊆ NF−→

R′ (FU,V), and

• CP({s→ t}, R′) = ∅.

It follows from CP({s → t}, R′) = ∅ that CPε(R′) = CPε(∆in(U(R))). Let s ' t

∈ CPε(R′). Suppose that s→ t ∈ R′ \∆in(U(R)). Then, it follows from the above
second claim that sθ −→

i R′ tθ for every substitution θ such that Ran(θ) ⊆ NF−→
R′ .

It is shown in [12] that a terminating TRS S is innermost-confluent if s′θ′ and t′θ′

are joinable with respect to ∗−→
i S for every s′ ' t′ ∈ CPε(S) and substitution θ′ such

that Ran(θ′) ⊆ NFS . Hence, R′ is innermost-convergent.

B.5.2 (4)
It follows from the definition of the simplified completion procedure that R′ contains
all rules in R(0). Consider a rule l→ r ∈ R(0). It follows from the pattern-preserving
property and the properties of added rules that if lσ is an innermost redex of R(0)

then lσ′ is also an innermost redex of R′ where xσ ∗−→
i

!
R′ xσ′ for all x ∈ Dom(σ).

Thus, we have lσ ∗−→
i

!
R′ lσ′ −→

i {l→r} rσ
′ and rσ ∗−→

i R′ rσ′. Since R′ is terminating, rσ′

has a normal form of R′, and hence lσ +−→
i

!
R′ ◦ ∗←−

i
!
R′ rσ.

Consider a reduction lσ −→
i ∆in(U(R)) rσ by a removed rule l→ r ∈∆in(U(R))\R(0)

such that l is an instance of another rule l′ → r′ ∈ R(0). Let l ≡ l′θ. Then, we have
another reduction lσ ≡ l′θσ −→

i ∆in(U(R)) r
′θσ. For this reduction, we have r′θσ ∗−→

i
!
R′

r′θσ′ where xθσ ∗−→
i

!
R′ xσ′ for all x ∈ Dom(σ). Then, we have another reduction

rσ
∗−→
i R′ rσ′. As described above, E(0) contains their critical pair r ' r′θ. When

the procedure halts successfully, it follows from the assumption that R′ has either
r′θ → r or r → r′θ.

• Case of r′θ → r ∈ R′. As described above, r′θσ′ is an innermost redex of R′.
Thus, we have r′θσ′ −→

i R′ rσ′. Since R′ is terminating, rσ′ has a normal form of

R′, and hence r′θσ′ +−→
i

!
R′ ◦ ∗←−

i
!
R′ rσ′.

• Case of r → r′θ ∈ R′. Similarly to the first case, we have r′θσ′ ∗−→
i

!
R′ ◦ +←−

i
!
R′ rσ′.

Therefore, we have lσ ∗−→
i R r′θσ′ ( +−→

i
!
R′ ◦ ∗←−

i
!
R′) ∪ ( ∗−→

i
!
R′ ◦ +←−

i
!
R′) rσ′

∗←−
i R′ rσ.

From the above discussion and −→
i U(R) = −→

i ∆in(U(R)), we have −→
i ∆in(U(R)) ⊆

( +−→
i

!
R′ ◦ ∗←−

i
!
R′) ∪ ( ∗−→

i
!
R′ ◦ +←−

i
!
R′).

B.5.3 Theorem 4.4 (3)
Let −→

1
= {(s, t) | s, t ∈ T (F ,V), s −→

i U(R) t} and −→
2

= {(s, t) | s, t ∈
T (F ,V), s +−→

i R′ t}. Then, we have ∗↔
1
⊆ ∗↔

2
, confluence of −→

2
, termination of

−→
1

, and NF 1 = NF 2 where NF i is the set of normal forms with respect to −→
i

.
Therefore, it follows from Theorem 3.3 in [32] that ∗−→

1
= ∗−→

2
in T (F ,V), and hence

∗−→
i

!
U(R) = ∗−→

i
!
R′ in T (F ,V). 2
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B.6 Proof of Theorem 5.2 (i)

All normal forms over F that are reachable from InvF (t) are either of the form
〈t1, . . . , tn〉 or itself ([25]). In the latter case, t1 ≡ t2 ≡ InvF (t). We only consider
the former case.

Assume that for some F and normal form t, there are tuples of normal
forms 〈s1, . . . , sn〉 and 〈t1, . . . , tn〉 such that 〈s1, . . . , sn〉 ∗←−

i Inv(R) InvF (t) ∗−→Inv(R)

〈t1, . . . , tn〉 and 〈s1, . . . , sn〉 6≡ 〈t1, . . . , tn〉. Then, it follows from the correctness of
Inv (shown in [25]) and Theorem 3.6 that F (s1, . . . , sn) ∗−→R t

∗←−R F (t1, . . . , tn).
Injectivity of F implies 〈s1, . . . , sn〉 ≡ 〈t1, . . . , tn〉. However, this contradicts
〈s1, . . . , sn〉 6≡ 〈t1, . . . , tn〉. 2

B.7 Proof of Theorem 5.2 (ii)

The outline of the proof follows the proof of the corresponding theorem in [22].
We show quasi-simplifyingness of Inv(R). Then, operational termination of

Inv(R) follows from quasi-simplifyingness.
We first give a definition of quasi-simplifyingness [27].

Definition B.7 A deterministic 3-CTRS S over a signature F is called quasi-
simplifying if there is an extension F ′ of the signature F (so F ⊆ F ′) and a sim-
plification ordering � on T (F ′,V) that satisfies the following conditions for every
rule l→ r ⇐ s1 → t1 ∧ · · · ∧ sk → tk ∈ S, every substitution σ: V → T (F ′,V), and
every 0 ≤ i < k:

(i) if sjσ � tjσ for every 1 ≤ j ≤ i, then lσ � si+1σ,

(ii) if sjσ � tjσ for every 1 ≤ j ≤ k, then lσ � rσ.

Lemma B.8 ([27,14]) Quasi-simplifyingness implies operational termination.

We abbreviate the sequence t1, . . . , tn of terms to −→t .
The following properties of Inv(R) follows from [24,25].

Proposition B.9 Let R be a constructor TRS. Suppose that Inv(R) ∩ R = ∅.
Then, every rewrite rule F (−→u )→ r in R is transformed by the inversion Inv into
a deterministic conditional rule

InvF (r′,
−→
u′ )→ 〈−→w 〉 ⇐

∧k
i=1 InvFi(yi,

−→
u′i)→ 〈−→wi〉

where

• each Fi is a defined of R,
• Fi and Fj (i 6= j) appear at different positions of r,
• r′ is a constructor term of R,

•
−→
u′ , −→w ,

−→
u′1, . . . ,

−→
u′k, −→w1, . . . ,−→wk are sequences of constructor terms,

• each variable yi is not in Var(r,−→u ),
• yi and yj (i 6= j) are different,
• each yi appears exactly once in either r′ or −→wj (j < i) and not in −→wl and −→w (i ≤
l),
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• Var(
−→
u′i) ⊆ Var(r′,

−→
u′ ), and

• Var(w) ⊆ Var(r′,
−→
u′ ,−→w1, . . . ,−→wk) \ {y1, . . . , yk}.

Moreover, the conditional rule has the following properties:

(a) if the original rule is non-erasing, then each variable in Var(−→u ) occurs in either
r′ or −→wi,

(b) if r is a constructor term of R, then k = 0 and r′ ≡ r, and

(c) if the root symbol G of r is a defined symbol of R, then r′ ≡ y1 and G = F1.

Lemma B.10 Let s ∈ T (F ,V) \ V, t ∈ T (G, V ) for signatures F and G (⊆ F), σ
be a substitution, >lpo be the lexicographic path ordering determined by a precedence
> on F . If root(s) > G for all G ∈ G and sσ >lpo xσ for all x ∈ Var(t), then sσ

>lpo tσ.

Proof. We prove this by induction on structure of t.

• Case of t ≡ x ∈ V. It follows from the assumption that sσ >lpo xσ ≡ tσ.
• Let t ≡ G(t1, . . . , tm) where G ∈ G. By the induction hypothesis, we have sσ
>lpo tiσ. Now we have root(s) > G and sσ >lpo tiσ. Thus, it follows from the
definition of LPOs that sσ >lpo G(t1σ, . . . , tmσ) ≡ tσ.

2

Lemma B.11 Let R be a non-erasing constructor TRS that satisfies the assump-
tion in Theorem 5.2. Then, Inv(R) is quasi-simplifying.

Proof. Let FInv be the set of defined symbols of Inv(R) such that {InvF | F ∈
DR}. We suppose that tuples symbols 〈〉 are in F .

Let >lpo be the lexicographic path ordering determined by the precedence >
that satisfies all of the following:

• InvF > G for all InvF ∈ FInv and G ∈ F , and
• if F ∈ DR calls G ∈ DR and G does not depend on F , then InvF > InvG.

Otherwise, InvF = InvG.

It is clear that the special rules InvF (F (−→x ))→ 〈−→x 〉 ∈ Inv(R) satisfy InvF (F (−→x ))
>lpo 〈−→x 〉. We only show the rule obtained from F (−→u ) → r ∈ R satisfies the
conditions of quasi-simplifyingness.

Let the conditional rule obtained from F (−→u )→ r ∈ R be InvF (r′,
−→
u′ )→ 〈−→w 〉 ⇐∧k

i=1 InvFi(yi,
−→
u′i) → 〈−→wi〉. Consider the case that r ∈ V. Let r ≡ x. It follows

from Proposition B.9 that k = 0, r′ ≡ x and Var(−→u ) = Var(−→w ) = {x}, and hence
InvF (x,

−→
u′ ) >lpo 〈−→w 〉 by Lemma B.10. Therefore, the conditional rule satisfies the

conditions of quasi-simplifyingness.
Consider the remaining case that r 6∈ V. We first prove the following claim for

every i (1 ≤ i ≤ k) by induction on i:

if InvFj(yj ,
−→
u′j)σ ≥lpo 〈−→wj〉σ for 1 ≤ j < i, then InvF (r′,

−→
u′ )σ >lpo InvFi(yi,

−→
u′i)σ.

• Base case (i = 1). It follows from Proposition B.9 that root(r′) is a constructor
of R, y1 ∈ Var(r′), Var(u′1) ⊆ Var(r′,

−→
u′ ), and

−→
u′1 is a sequence of constructor
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terms.
· Case that root(r) is a constructor of R. By the assumption on >, we have

InvF ≥ InvF1. It follows from the definition of LPOs and Lemma B.10
that InvF (r′,

−→
u′ ) >lpo InvF1(y1,

−→
u′1). Since >lpo is closed under substitutions,

InvF (r′,
−→
u′ )σ >lpo InvF1(y1,

−→
u′1)σ.

· The remaining case that root(r) is a defined symbol of R. By assumption,
F1 does not depend on F . Thus, it follows from the construction of > that
InvF > InvF1, and hence InvF (y1,

−→
u′ ) >lpo InvF1(y1,

−→
u′1). Therefore, we have

InvF (r′,
−→
u′ )σ >lpo InvF1(y1,

−→
u′1)σ.

• Induction case (i > 1). Suppose that InvFj(yj ,
−→
u′1)σ ≥lpo 〈−→wj〉σ for 1 ≤ j < i. It

follows from Proposition B.9 that Var(
−→
u′i) ⊆ Var(r′,

−→
u′ ), and there exist some j

(< i) such that yi ∈ Var(−→wj). By the induction hypothesis, we have InvF (r′,
−→
u′ )σ

>lpo InvFj(yj ,
−→
u′j)σ. It is clear that InvFj(yj ,

−→
u′j)σ >lpo 〈−→wj〉σ >lpo yiσ. It follows

from the construction of > that InvF ≥ InvFi. Therefore, it follows from Lemma
B.10 that InvF (r′,

−→
u′ )σ >lpo InvFi(yi,

−→
u′i)σ.

Therefore, it follows from the above claim that the conditional rule satisfies the first
condition of quasi-simplifyingness.

Next we show that the conditional rule satisfies the second condition of quasi-
simplifyingness. Suppose that InvFj(yj ,

−→
u′j)σ ≥lpo 〈−→wj〉σ for 1 ≤ j ≤ k. Then we

have InvFj(yj ,
−→
u′j)σ >lpo 〈−→wj〉σ because InvFj > 〈〉. It follows from non-erasingness

of R and Proposition B.9 that Var(−→w ) ⊆ Var(r′,
−→
u′ ,−→w1, . . . ,−→wk) \ {y1, . . . , yk}. Let

x ∈ Var(−→w ).

• Case of x ∈ Var(r′). It is clear that InvF (r′,
−→
u′ ) B x, and hence InvF (r′)σ >lpo xσ.

• The remaining case. There exist some j (1 ≤ j ≤ k) such that x ∈ Var(−→wj),
and hence 〈−→wj〉 B x. It follows from InvFj(yj ,

−→
u′j)σ >lpo 〈−→wj〉σ and the first con-

dition of quasi-simplifyingness that InvF (r′,
−→
u′ )σ >lpo InvFj(yj ,

−→
u′j)σ, and hence

InvF (r′,
−→
u′ )σ >lpo 〈−→wj〉σ >lpo xσ.

Thus we have InvF (r′,
−→
u′ )σ >lpo xσ. It follows from Lemma B.10 that InvF (r′,

−→
u′ )σ

>lpo 〈−→w 〉σ. Therefore, the conditional rule satisfies the second condition of quasi-
simplifyingness. 2

Theorem 5.2 (ii) follows from Lemmas B.8 and B.11.
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